Search results for "Sparse representation"

showing 2 items of 2 documents

A probabilistic compressive sensing framework with applications to ultrasound signal processing

2019

Abstract The field of Compressive Sensing (CS) has provided algorithms to reconstruct signals from a much lower number of measurements than specified by the Nyquist-Shannon theorem. There are two fundamental concepts underpinning the field of CS. The first is the use of random transformations to project high-dimensional measurements onto a much lower-dimensional domain. The second is the use of sparse regression to reconstruct the original signal. This assumes that a sparse representation exists for this signal in some known domain, manifested by a dictionary. The original formulation for CS specifies the use of an l 1 penalised regression method, the Lasso. Whilst this has worked well in l…

Signal processing0209 industrial biotechnologyBayesian methodsComputer scienceTKAerospace Engineering02 engineering and technologycomputer.software_genre01 natural sciencesRelevance vector machineNDTSettore ING-IND/14 - Progettazione Meccanica E Costruzione Di Macchine020901 industrial engineering & automationLasso (statistics)0103 physical sciencesUltrasoundUncertainty quantification010301 acousticsSparse representationCivil and Structural EngineeringSignal processingSignal reconstructionMechanical EngineeringProbabilistic logicSparse approximationCompressive sensingComputer Science ApplicationsCompressed sensingControl and Systems EngineeringRelevance Vector MachineData miningcomputer
researchProduct

Sparse Image Representation by Directionlets

2010

Despite the success of the standard wavelet transform (WT) in image processing in recent years, the efficiency and sparsity of its representation are limited by the spatial symmetry and separability of its basis functions built in the horizontal and vertical directions. One-dimensional discontinuities in images (edges or contours), which are important elements in visual perception, intersect too many wavelet basis functions and lead to a non-sparse representation. To capture efficiently these elongated structures characterized by geometrical regularity along different directions (not only the horizontal and vertical), a more complex multidirectional (M-DIR) and asymmetric transform is requi…

Directional transformsbusiness.industryMultiresolution analysisWavelet transformImage codingImage processingDirectional vanishing momentsContourletImage orientation analysisWavelet transformsWaveletCurveletImage scalingImage interpolationComputer visionSeparable transformsArtificial intelligencebusinessAlgorithmMultiresolution analysisSparse representationMathematicsImage compression
researchProduct